Search results for "cosmic string"

showing 10 items of 11 documents

Spectral energy distribution and generalized Wien's law for photons and cosmic string loops

2014

Physical objects with energy $u_w(l) \sim l^{-3w}$ with $l$ characteristic length and $w$ a dimensionless constant, lead to an equation of state $p=w\rho$, with $p$ the pressure and $\rho$ the energy density. Special entities with thisbproperty are, for instance, photons ($u = hc/l$, with $l$ the wavelength) with $w = 1/3$, and some models of cosmic string loops ($u =(c^4/aG)l$, with $l$ the length of the loop and $a$ a numerical constant), with $w = -1/3$. Here, we discuss some features of the spectral energy distribution of these systems and the corresponding generalization of Wien's law, which in terms of $l$ has the form $Tl_{mp}^{3w}=constant$, being $l_{mp}$ the most probable size of …

PhysicsPhotons cosmic string loops statistical mechanics Wien's law dark energy.PhotonCharacteristic lengthEquation of state (cosmology)Condensed Matter PhysicsAtomic and Molecular Physics and OpticsLoop (topology)Cosmic stringLawSpectral energy distributionConstant (mathematics)Settore MAT/07 - Fisica MatematicaMathematical PhysicsDimensionless quantityPhysica Scripta
researchProduct

Gravitational scattering on a global monopole

1991

The scattering amplitude and the total scattering cross section of massless particles propagating in the gravitational field of a global monopole are derived. We find that the physical signature of such defects is a ringlike angular region where the scattering amplitude is very large. The size of this ringlike region is determined by the ratio of the global monopole mass to the Planck mass and its appearance stems from the fact that the metric of the global monopole is not asymptotically flat but rather displays the characteristic spherical angle defect. The situation is therefore very much reminiscent of scattering in the gravitational field of the cosmic string.

GravitationCosmic stringScattering amplitudeMassless particlePhysicsGravitational fieldScatteringQuantum mechanicsPlanck massMagnetic monopoleFísica
researchProduct

Light majoron cold dark matter from topological defects and the formation of boson stars

2019

We show that for a relatively light majoron ($\ll 100 $ eV) non-thermal production from topological defects is an efficient production mechanism. Taking the type I seesaw as benchmark scheme, we estimate the primordial majoron abundance and determine the required parameter choices where it can account for the observed cosmological dark matter. The latter is consistent with the scale of unification. Possible direct detection of light majorons with future experiments such as PTOLEMY and the formation of boson stars from the majoron dark matter are also discussed.

PhysicsmonopolesParticle physicsCold dark matterCosmology and Nongalactic Astrophysics (astro-ph.CO)cosmological neutrinosdomain wallsCosmic stringsDark matterHigh Energy Physics::PhenomenologyFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsCosmology of Theories beyond the SMTopological defectCosmic stringStarsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Seesaw molecular geometryparticle physics – cosmology connectionMajoronBosonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Studies in thermal and dynamical duality

2011

Settore MAT/07 - Fisica MatematicaT-duality vortex loops cosmic string loops electromagnetic radiation
researchProduct

Duality relation between radiation thermodynamics and cosmic string loop thermodynamics

2011

We discuss thermodynamics of electromagnetic radiation, with p=(1/3){rho} and S{proportional_to}T{sup 3}V, and of cosmic string loops, with p=-(1/3){rho} and S{proportional_to}T{sup -3}V, where p stands for pressure, T temperature, {rho} energy density, S entropy, and V volume. We write the thermodynamic formalisms under a common framework that illustrates their formal relationship and allows us to go from one to the other through a smooth transformation. From a microscopic perspective, these relations arise from the energy relations u({lambda})=hc/{lambda} for the photons of electromagnetic radiation, and u(l)=(c{sup 4}/a{sup 2}G)l for cosmic string loops, a being a numerical (dimensionles…

PhysicsNuclear and High Energy PhysicsThermodynamicsElementary particleLambdaPlanck constantElectromagnetic radiationGravitational constantCosmic stringEntropy (classical thermodynamics)symbols.namesakeQuantum mechanicssymbolscosmic stringelectromagnetic radiation thermodynamics T-duality thermal duality.Settore MAT/07 - Fisica MatematicaDimensionless quantityPhysical Review D
researchProduct

A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007

2013

A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The 90% CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two sup…

AstrofísicaEXPLOSIONSHigh energyPhotonPOINT SOURCESSUPERCONDUCTING COSMIC STRINGSGravitational waves / experimentsGravitational waves/experimentsAstrophysics01 natural scienceshigh energy neutrinosgravitational wavesgravitational waves / experiment010303 astronomy & astrophysicsQCmedia_commonLine (formation)QBPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)GAMMA-RAY BURSTSdark matter detectorsGravitational waves / experiments; Neutrino astronomy; Astronomy and Astrophysicshigh energy neutrinos[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicsgravitational waves; gravitational waves / experiments; neutrino astronomy; high energy neutrinos; high energy neutrinosgravitational wavesgravitational wavesparticle physics - cosmology connectionNeutrino astronomyCOSMIC STRINGSRELATIVISTIC JETSNeutrinoAstrophysics - High Energy Astrophysical Phenomenasupersymmetry and cosmology[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]gravitational waves / experiments; neutrino astronomyTELESCOPEmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaSCIENCE RUNFOS: Physical sciencesddc:500.2GAMMA-RAY BURSTS; CORE-COLLAPSE SUPERNOVAE; SUPERCONDUCTING COSMIC STRINGS; MAGNETAR GIANT FLARES; SCIENCE RUN; RELATIVISTIC JETS; POINT SOURCES; BLACK-HOLES; LOCAL-RATE; TELESCOPEGravitational wavesGeneral Relativity and Quantum CosmologyCORE-COLLAPSE SUPERNOVAESettore FIS/05 - Astronomia e AstrofisicaCoincidentneutrino experiments0103 physical sciences010306 general physicsMAGNETAR GIANT FLARESBLACK-HOLESHigh Energy Astrophysical PhenomenaGravitational waveAstronomy[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astronomy and AstrophysicsDRIVENUniverseLIGOGIANT FLARESLOCAL-RATEFISICA APLICADALUMINOSITYRADIATIONHigh Energy Physics::Experiment[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Experiments[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Three Duality Symmetries between Photons and Cosmic String Loops, and Macro and Micro Black Holes

2015

We present a review of two thermal duality symmetries between two different kinds of systems: photons and cosmic string loops, and macro black holes and micro black holes, respectively. It also follows a third joint duality symmetry amongst them through thermal equilibrium and stability between macro black holes and photon gas, and micro black holes and string loop gas, respectively. The possible cosmological consequences of these symmetries are discussed.

Particle physicsPhysics and Astronomy (miscellaneous)General MathematicsAstrophysics::High Energy Astrophysical PhenomenaDuality (optimization)cosmic string loopDuality symmetryString (physics)black holes thermodynamicsMicro black holeGeneral Relativity and Quantum Cosmologyblack holes thermodynamicComputer Science (miscellaneous)photonsSettore MAT/07 - Fisica MatematicaBlack hole thermodynamicsduality symmetryPhysicsPhotonslcsh:MathematicsphotonPhoton gasCosmic string loopslcsh:QA1-939Black holeCosmic stringChemistry (miscellaneous)photons; cosmic string loops; black holes thermodynamics; duality symmetryBlack holes thermodynamicscosmic string loopsHawking radiation
researchProduct

Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run

2021

We search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 data set. Search results are presented for gravitational waves produced by cosmic string loop features such as cusps, kinks and, for the first time, kink-kink collisions.cA template-based search for short-duration transient signals does not yield a detection. We also use the stochastic gravitational-wave background energy density upper limits derived from the O3 data to constrain the cosmic string tension, $G\mu$, as a function of the number of kinks, or the number of cusps, for two cosmic string loop distribution models.cAdditionally, we develop and test a third model which interpolat…

High Energy Physics - TheoryDewey Decimal Classification::500 | Naturwissenschaften::550 | Geowissenschaftengravitational radiation: stochasticAstronomyCosmic stringsWAVESGeneral Physics and Astronomy01 natural sciencesGeneral Relativity and Quantum CosmologyCosmologyGravitation Cosmology & AstrophysicsGravitationLIMITSCosmic strings & domain wallCosmology & Astrophysicsddc:550Distribution modelsTransient signalenergy: densityLIGOQCstochastic modelLIGO Scientific CollaborationShort durationsCosmic strings & domain walls; Gravitational waves; Gravitation Cosmology & AstrophysicsQBPhysicsCosmic strings & domain wallskinkSettore FIS/03Stochastic systems[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]hep-thPhysicsGravitational effectsarticleGRAVITATIONAL-RADIATION; LIMITS; EVOLUTION; WAVEStensionGravitational-wave signalsCosmologyPhysical Sciencesastro-ph.COGrand unified theories[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational waveAstrophysics - Cosmology and Nongalactic AstrophysicsGravitational effects; Gravity waves; Stochastic models; Stochastic systems; Cosmic strings; Distribution models; Grand unified theories; Gravitational-wave signals; Orders of magnitude; Short durations; Template-based; Transient signalGravitationCosmology and Nongalactic Astrophysics (astro-ph.CO)gr-qcPhysics MultidisciplinaryGRAVITATIONAL-RADIATIONO3FOS: Physical sciencesContext (language use)General Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsPhysics and Astronomy(all)Gravity wavesGravitation and AstrophysicsGravitational wavesTheoretical physicsGeneral Relativity and Quantum Cosmologystatistical analysis0103 physical sciencesTemplate-basedCosmic Strings O3 LIGO Virgoddc:530010306 general physicscosmic stringSTFCInflation (cosmology)Science & Technology010308 nuclear & particles physicsGravitational wavestring tensionVirgogravitational radiation: backgroundRCUKLIGOEVOLUTIONCosmic stringStochastic modelsOrders of magnitudeVIRGOHigh Energy Physics - Theory (hep-th)Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run

2019

We present the results of a search for short-duration gravitational-wave transients in the data from the second observing run of Advanced LIGO and Advanced Virgo. We search for gravitational-wave transients with a duration of milliseconds to approximately one second in the 32-4096 Hz frequency band with minimal assumptions about the signal properties, thus targeting a wide variety of sources. We also perform a matched-filter search for gravitational-wave transients from cosmic string cusps for which the waveform is well-modeled. The unmodeled search detected gravitational waves from several binary black hole mergers which have been identified by previous analyses. No other significant event…

AstronomyGravitational waves detectionAstrophysicsdetector: network01 natural sciencesSignalGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsGravitational waves detection Stochastic gravitational-wavebinary [black hole]LIGOgravitational waveQCQBmedia_commonastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01Physicsgravitational waves neutron starsgravitational wavesGeneral relativityburst [gravitational radiation]network [detector]Physical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]direct detection [gravitational radiation]Advanced VirgoAstrophysics - High Energy Astrophysical PhenomenaFrequency bandsensitivity [detector]gr-qcmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesalternative theories of gravityGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & Astrophysicsgravitational radiation: direct detectionemission [gravitational radiation]Binary black holeSettore FIS/05 - Astronomia e Astrofisicabinary: coalescence0103 physical sciencesgravitational radiation: burstAdvanced LIGOWaveformddc:530010306 general physicscosmic stringSTFCScience & Technology010308 nuclear & particles physicsGravitational waveRCUKStochastic gravitational-waveGravitational Wave PhysicsLIGOgravitational radiation detectorgravitational waves; Advanced LIGO; Advanced VirgoCosmic stringdetector: sensitivityVIRGOPhysics and Astronomyblack hole: binarySkygravitational radiation: emissionDewey Decimal Classification::500 | Naturwissenschaften::530 | Physikcoalescence [binary][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

CHIRAL ANOMALY IN ASHTEKAR'S APPROACH TO CANONICAL GRAVITY

1998

The Dirac equation in Riemann–Cartan spacetimes with torsion is reconsidered. As is well-known, only the axial covector torsion A, a one-form, couples to massive Dirac fields. Using diagrammatic techniques, we show that besides the familiar Riemannian term only the Pontrjagin type four-form dA ∧ dA does arise additionally in the chiral anomaly, but not the Nieh–Yan term d* A, as has been claimed recently. Implications for cosmic strings in Einstein–Cartan theory as well as for Ashtekar's canonical approach to quantum gravity are discussed.

Chiral anomalyPhysicsGravity (chemistry)Dirac (software)Astronomy and AstrophysicsType (model theory)Cosmic stringGeneral Relativity and Quantum Cosmologysymbols.namesakeClassical mechanicsSpace and Planetary ScienceDirac equationTorsion (algebra)symbolsQuantum gravityMathematical PhysicsMathematical physicsInternational Journal of Modern Physics D
researchProduct